
Tech Feasibility
October 15, 2024

Lumberjack Balancing
Project Sponsor: Dr. Scot Raab

Project Mentor: Paul Deasy
Team Members: Riley Burke, Cristian Marrufo,

 Sergio Rabadan, Braden Wendt

1

Table of Contents

Introduction...3
Technological Challenges..4

Data Identification...4
Data Filtration & Condensing... 4
Customizable Algorithm:.. 5
Simple Graphical User Interface.. 5

Technology Analysis.. 6
Data Identification...6
Data Filtration & Condensing... 9
Customizable Algorithm... 12
Simple Graphical User Interface.. 14

Technology Integration.. 16
System Overview... 16
Data Flow... 18

Conclusion.. 18

2

Introduction
The associate deans of each college at Northern Arizona University oversee
faculty workload assignments to ensure the effective alignment with university
policies. This crucial task involves calculating workload percentages of hundreds
of faculty members based off of an even greater number of classes. Our client,
Dr. Scot Raab, along with other associate deans, manually calculate the
workloads, and the sheer volume of data makes this process highly complex for
manual calculation. The current manual method not only demands considerable
time and effort but also increases the likelihood of errors, given the intricate
nature of faculty and class assignments. To address these challenges, we
propose developing an application designed to automate the workload
calculations, thereby significantly reducing the time and effort required by the
associate deans. This solution will not only enhance efficiency but also improve
accuracy in workload assessment, allowing the deans to focus on other critical
administrative duties. The application will be user-friendly, requiring only the input
of raw data and a reference sheet—both in Microsoft Excel format—and will
generate a detailed, annotated workload assessment report. This report will
provide a comprehensive and accurate overview, ensuring that the faculty
workload is managed in a streamlined and effective manner.

To overcome the complexities of manual workload calculations and provide a
streamlined, automated solution for Northern Arizona University, several
technological challenges must be addressed. Each of these challenges requires
a tailored approach to ensure the system is efficient, flexible, and user-friendly.
The following sections outline these challenges and the strategies we propose to
solve them.

3

Technological Challenges

We will need to:

Determine what data points are crucial for calculations:
● This involves identifying, extracting, and structuring various types of

information, such as classes taught, and the assigned credits and amount
of enrolled students, and their faculty track (career or tenure). We must
also consider the diversity of classes, including lab sessions, lectures,
seminars, and other formats, as each carry different weights and impact
workload calculations differently. The challenge lies in ensuring that we
gather all relevant data while filtering out any extraneous information that
could skew the results or complicate the process. Additionally, we need to
pay close attention to the instructor role, as we only need to consider the
PI (primary instructor).

Determine the best method for parsing and condensing the data:
● These documents contain numerous extraneous columns that must be

filtered out to focus on relevant information. The process will begin with an
automated filtering mechanism to remove non-essential data, such as
unrelated administrative details. This will streamline the dataset for
subsequent processing. Next, the application will address special cases, in
which the assignment values are pre-determined and loaded into the
application by the user. These cases will require customized parsing rules
and conditional logic to ensure accurate workload calculations. After
handling these complexities, the system will move on to processing
standard classes using predefined formulas, factoring in course type, credit
hours, and faculty status.

4

Create a highly customizable algorithm to ensure maintainability:
● The algorithm must be designed to dynamically determine class workload

weights based on an external Excel sheet that contains a table of
conditions and corresponding weights. This approach will allow for
flexibility, as associate deans can update or modify the conditions and
weights directly in the Excel sheet without needing to alter the underlying
code, which is highly valuable to our client. The algorithm will read the
Excel sheet, parse the conditions (e.g., class type, credit hours), and
match them with the associated weights. This modular design will ensure
that any updates to the conditions or weights are immediately reflected in
the calculations, minimizing the need for future code revisions. We will also
provide guidelines for formatting the Excel sheet to ensure consistency
and minimize errors when updating the conditions or weights.

Design a simple user interface to promote a seamless workflow:
● The UI will include basic functions such as file upload buttons for the Excel

files, a settings button to check the table for calculations, and a run
calculation button. Clear labels, minimal menus, and a status indicator will
guide users, making the process straightforward and efficient. Tooltips and
brief instructions will be incorporated to provide quick guidance, minimizing
the need for training. This minimalistic design will allow for easy updates
and modifications without complicating the user experience, keeping the
focus on efficiency and usability.

Having outlined the key technological challenges, it is essential to evaluate
various approaches to address each issue effectively. The following technology
analysis examines potential solutions, comparing their strengths and
weaknesses to determine the most suitable methods for integrating these
components into a cohesive and efficient system.

5

Technology Analysis

Data Identification

Issue Introduction:

● The primary function of the product we are attempting to develop is to
conduct a series of what are essentially mathematical calculations
provided a pre-organized data set, however, although the operations
themselves might be relatively simple, one of the challenges we expect to
encounter as we manipulate and analyze the data involves identifying the
adequate data points that will be necessary to produce the results we
want. More specifically, we need to develop an algorithm that is able to
parse through all the data provided in order to effectively distinguish
between any unnecessary information and locate the specified data points
that will be utilized in the program’s primary operations.

Desired Characteristics:
● To resolve this particular issue, the ideal solution needs to satisfy various

characteristics we have identified and deemed crucial for the purposes of
our project. As our program is expected to not only extract but also analyze
a vast amount of data, irrespective of size and uniformity, we require the
tools to filter through and extract certain variables from the data set.
These crucial data points will then need to be stored into data structures
that should optimally allow for easy access while also maintaining
readability. Additionally, this process must be able to be conducted through
its entirety without being hindered by irregular data, such as specific
edge cases, or the size of the data set, since we assume the information
given will change frequently as workload is assigned or altered in various
ways.

Alternatives:
● We were able to find a variety of different programming languages and

their respective utility libraries which we considered as potential solutions
to the issues of analyzing and manipulating data, particularly as it pertains
to parsing through large data sets. The following are the most promising
alternatives we identified:

6

○ SQL: SQL (Structured Query Language) is a domain-specific
language designed to manage and query relational databases. It
remains essential for extracting and manipulating data stored in
databases. Developed in the early 1970s by Donald D. Chamberlin
and Raymond F. Boyce at IBM, SQL was based on Edgar F. Codd’s
relational model. By the late 1980s, SQL was standardized by ANSI
and ISO.

○ R: R is a programming language and software environment
specifically designed for statistical computing and graphics. It is
widely used in academia, research, and industries that require heavy
statistical analysis. Created by Ross Ihaka and Robert Gentleman in
1993 at the University of Auckland, New Zealand, R was designed
as a free, open-source alternative to the proprietary S language,
used for statistical analysis.

○ Java: Java is a general-purpose, object-oriented programming
language known for its portability, performance, and scalability. It’s a
language of choice for many enterprise-level data applications.
Developed by James Gosling at Sun Microsystems (released in
1995), Java was designed to have as few implementation
dependencies as possible, allowing it to run on any system capable
of running the Java Virtual Machine (JVM).

○ Python: Python is a high-level interpreted programming language,
notorious for being exceptionally simple and understandable. It’s
open-source and has extensive libraries that support various forms
of data manipulation, analysis, and visualization. Created by Guido
van Rossum and first released in 1991, Python was initially designed
as a general-purpose language, focusing on code readability. Its
simplicity made it quickly adaptable for data science tasks.

Analysis:

● SQL
○ Efficient for querying large datasets: can be incredibly useful and

effective when querying and aggregating data from relational
databases in a speedy fashion.

○ Standardized language: widely used and supported across various
database systems including MySQL, PostgreSQL, and Microsoft
SQL.

7

○ Limited for complex analysis: effective for basic data
manipulation, however, it seems to encounter some limitations using
more complex data analysis algorithms.

○ Issues handling unstructured data: lacks compatibility with
unstructured data types such as text, images, or JSON for web
implementation purposes.

● R
○ Designed for data analysis: a free open source programming

language specifically built for statistical analysis and data
visualization.

○ Extensive libraries: has a wide range of packages useful for a
variety of purposes, such as statistical computing, visualization, and
even machine learning.

○ Slow performance: compared to other languages, R is comparably
slower when working with larger datasets.

○ Lacks flexibility: due to being specifically designed for data
analysis applications, it lacks the ability to be implemented in more
versatile use cases compared to other languages.

● Java
○ High performance and scalability: notoriously fast when handling

larger datasets or any application that necessitates high
performance.

○ Strong type system: strongly typed languages enforce strict rules
that help in preventing errors when compiling.

○ Limited libraries: when compared to other languages, java appears
to possess a lower amount of libraries for data analysis, which could
be detrimental to the functionality of our application.

○ Memory management: requires active memory management and
garbage collection, which could inevitably lead to complication when
managing data.

● Python
○ Easy to learn and use: syntax is clear, concise, and easy to

understand irrespective of experience with programming.
○ Large set of libraries: possess a vast array of libraries specifically

designed for data analysis, in particular pandas.
○ Versatile: general purpose programming language, meaning the

applications of the languages are not restrictive.

8

○ Handling large datasets: can handle large datasets efficiently and
effectively.

Chosen Approach:

● Through the process of extensive deliberation we identified several
candidates for which programming language would best be suited for the
application of data manipulation and analysis, by comparing the
alternatives and their effectiveness for implementation in our use case. We
considered various characteristics that would be most relevant for our
purposes and our current experience with different technologies, ultimately
leading us to choose Python as the best option. The following table
illustrates our decision process by comparing all the options we examined.

Feasibility:

● Python is an incredibly powerful language as it not only provides a vast
amount of resources with its many libraries, in particular those pertaining to
data analysis and manipulation, but it is also fairly easy to use and
understand regardless of skill level. In the future we intend to perform
several tests to validate the language’s feasibility when parsing through
data and extracting the functional variables we specify while discarding
irrelevant data values.

Data Filtration & Condensing

Issue Introduction:
● One of the main challenges we face is the design of an algorithm that can

dynamically calculate faculty workload while maintaining a substantial level
of flexibility and adaptability. There is a considerable diversity in credit

9

Alternative
Technology

Performance Versatility User-friendly Constraints Average

Python 4/5 5/5 5/5 4.5/5 4.625

R 2/5 1/5 2/5 2/5 1.75

Java 5/5 4/5 4/5 4/5 4.25

SQL 4/5 3/5 3/5 3/5 3.25

hours, class types, and faculty roles resulting in numerous factors that
need to be considered in order to accurately calculate the faculty’s
workload. Our client will need the ability to modify workload conditions and
related weights without requiring code changes. This flexibility is essential
as there might be university policies or faculty changes over time, ensuring
the algorithm remains efficient, user-friendly, and capable of being utilized
regardless of any challenges that might arise.

Desired Characteristics:

To achieve the goals of flexibility and adaptability, the algorithm must have
the following characteristics:

● Flexibility: The algorithm must be able to dynamically apply workload
weights based on the Excel sheet. This ensures that our client can modify
workload conditions and weights without requiring code changes, making
the program responsive to policy updates or faculty changes as needed.

● Modularity: The algorithm should be broken down into independent
modules, such that each aspect (e.g., credit hours, class type, faculty role)
can be updated without affecting the entire system. This will allow for
easier maintenance and targeted adjustments over time.

● Maintainability: The goal is to minimize code changes. By reading
workload conditions and weights from an Excel file, updates can be made
without developer intervention. This ensures the program remains
adaptable to evolving needs while minimizing the need for future
development work.

● User-Friendliness: The Excel sheet must be clearly formatted with
guidelines to ensure that our client can update conditions and weights
without the risk of formatting errors. This reduces potential mistakes and
makes the system more accessible for non-technical users.

● Scalability: The algorithm must handle datasets of any size, provided the
format is respected. This ensures that the program will remain efficient and
maintain its performance as the needs of NAU and our client potentially
grow over time.

Alternatives:

● A possible alternative solution is the following:
○ Hardcoded Workload Conditions: This approach offers low

flexibility, as every update to workload policies would require the

10

intervention of a developer, increasing long-term maintenance costs.
While it might be more efficient in terms of speed, as it does not
have to analyze numerous possibilities, it lacks the adaptability we
are aiming to achieve. Any changes to workload conditions or
policies would need to be manually coded into the system, making it
impractical for a project where frequent updates or changes,
especially to address edge cases, may be necessary

Analysis:

● Hardcoded Workload Conditions:
○ Flexibility: Low - any policy changes requires code updates
○ Modularity: Low - all aspects are tightly integrated
○ Maintainability: Low - future code changes are required
○ User-Friendliness: Medium - Client will be very limited, but the

program itself will be easy to use
○ Scalability: Medium - As long as the current policies are respected

the program has the possibility to scale. However, it might not cover
edge cases

Chosen Approach:

Feasibility:

● Using a dynamic algorithm is the best choice because it allows faculty
workload to be adjusted easily without modifying the code. By pulling data
from the Excel file and passing it through the algorithm, users can directly
modify workload conditions and weights. This approach ensures the
system remains flexible and adaptable to policy changes, minimizing the

11

Alternative
Technology

Performance Versatility User-friendly Constraints Average

Dynamic
Algorithm

5/5 5/5 4.5/5 4.5/5 4.75

Hardcoding
Conditions and
Weights

4/5 3/5 3/5 2/5 3

need for developer intervention. Resulting in a more practical and scalable
solution.

Customizable Algorithm
Issue Introduction:

● The challenge is to create an algorithm capable of dynamically determining
class workload weights using an external sheet that holds condition and
corresponding weights. This system needs to be flexible, allowing
associate deans to make updates directly in the Excel sheet without
requiring code modification. The algorithm must be able to read and
interpret these conditions, apply the correct weights, and immediately
reflect changes in calculations, reducing the need for ongoing code
maintenance.

Desired Characteristics:
● Flexibility: The algorithm should adapt to updates in the Excel sheet

without requiring code changes, allowing for dynamic policy adjustments.
● Modularity: The design must be modular, allowing each component

(condition reading, weight matching, and calculation) to operate
independently and be easily modified if needed.

● Efficiency: The algorithm should parse and apply weights quickly,
minimizing processing time, even as the size or complexity of the dataset
grows.

● Reliability: It must include error-checking mechanisms to ensure the
conditions and weights in the Excel sheet are formatted correctly,
preventing miscalculations.

● User-Friendliness: The process for updating the Excel sheet must be
straightforward, with clear guidelines to minimize errors and maintain
consistency.

Alternatives:
● Hardcoding Conditions and Weights

○ Pros: The initial setup is simple and quick, as rules are directly
embedded in the code, making it suitable for small-scale or
short-term implementations. It avoids the need for external file
management and minimizes the risk of user errors.

12

○ Cons: Lacks flexibility; any policy changes require code
modifications, leading to higher maintenance time and costs.
Frequent updates increase the risk of bugs, affecting stability and
accuracy.

● Storing Conditions and Weights in a Database
○ Pros: Centralized data management and allows for dynamic

querying, ensuring the system always uses the latest information.
Offers robust access control and is ideal for complex or frequently
changing workload policies.

○ Cons: Adds complexity with database setup, schema design, and
user management. It also introduces dependencies beyond Excel,
which may not align with the client’s preference for simplicity and
familiarity.

Analysis:

● The Excel sheet approach provides the most flexibility, allowing users to
update weights and conditions directly without requiring code changes,
which ensures that the algorithm can adapt easily to evolving policies. This
method also supports user adoption since Excel is familiar to most
administrative staff, minimizing the learning curve and promoting efficient
use. While relying on Excel introduces potential risks, such as inconsistent
formatting, these can be mitigated through built-in error-checking
mechanisms and clear guidelines for users. Additionally, given that Excel
files are lightweight and can be processed efficiently with existing libraries,
this approach is expected to meet performance requirements without
adding significant overhead.

Chosen Approach:

● The table below compares different methods for implementing the
workload calculation algorithm, focusing on three approaches: hardcoding
conditions and weights, storing them in a database, and using an external
Excel sheet.

13

Alternative Technology Performance Versatility User-Friendly Constraints Average

Using an External Excel
Sheet

5/5 5/5 5/5 4/5 4.75

Feasibility:
● The proposed solution, using Python's pandas library, is highly feasible

both technically and operationally. Pandas provides efficient methods for
reading, filtering, and processing large Excel files, allowing the algorithm to
handle complex and diverse datasets with ease. By leveraging pandas
alongside libraries like openpyxl, we can implement robust error-checking
mechanisms to validate data integrity, column consistency, and overall file
format before processing. This ensures the system remains adaptable and
reliable, aligning with the requirement for flexibility as the associate deans
can adjust conditions directly in Excel without code changes. Python and
pandas are open-source and well-supported, making this approach
cost-effective, scalable, and maintainable, ultimately meeting Northern
Arizona University’s needs for a streamlined and automated workload
calculation system.

Simple Graphical User Interface

Issue Introduction:
● One of the main technological challenges we are facing is a proper user

friendly interface that enables the associate dean to navigate this with
ease. The Interface should support the key functionality of the product with
ease such as file uploads, executing calculations and providing reports. It
can be assumed that many people who will be using this software are not
tech savvy, so the UI should be minimalistic and easy to navigate. This will
minimize user errors and improve efficiency.

Desired Characteristics:
● Minimalist design: The interface will focus on key functionality.
● Clarity: Everything will be clearly labeled and users will be guided through

the process of the input file selection.

14

Storing Conditions and
Weights in a Database

4/5 4/5 3/5 3/5 3.5

Hardcoding Conditions and
Weights

3/5 2/5 4/5 2/5 2.75

● Status feedback: The UI will give clear feedback as to what is happening in
the process. In the case that there are error messages it will be shown, as
well as when it is complete.

● Flexibility: The interface will allow users to upload excel files that contain
the faculty workload data.

Alternatives:
● Command-Line-Interface: This is a more technical approach that would

require users to enter commands. It is overly complicated and not user
friendly.

● Web based Interface: This would provide a more scalable solution, but
would require more overhead. For a project of this size it would be overkill.

Analysis:
● Ease of use: The Tkinter library provides a simple yet powerful way to

create the necessary UI elements.
● Lightweight: Tkinter is lightweight and runs locally.
● Cross Platform: Tkinter will run on all platforms, but it is highly likely that it

will be run on Windows.
● Integration with Excel: Since Tkinter is a Python library it is easily

integrated with Excel.

Chosen Approach:

Feasibility:
This approach is feasible because of its simplicity and ease of implementation.
Tkinter is a well known and widely used library. The Python ecosystem offers
extensive support for excel file manipulation which ensures a smooth integration
between the UI and workload calculation logic. The UI can be expanded with

15

Alternative Technology Performance Versatility User-friendly Constraints Average

Tkinter 5/5 4/5 5/5 4/5 4.5

Web-Based Interface 4/5 5/5 3/5 /5 3.75

Command Line Interface 3/5 3/5 2/5 4/5 3

additional functionalities as this is developed and will provide advanced options
for handling edge cases.

With the analysis complete and the most effective solutions identified, the next
step is to integrate these components into a unified system architecture. The
following section outlines how these individual elements come together within a
coherent design, ensuring that each part functions seamlessly to meet the overall
objectives of the application.

Technology Integration
To effectively automate the faculty workload
calculation process, we must integrate each
micro-solution into a cohesive system
architecture. The pipe-and-filter architecture,
depicted in the diagram above, represents
how the major components work together to
achieve our product requirements. This
architecture allows data to flow sequentially
through various modules (filters), each
performing specific operations before passing the data to the next stage. This
approach ensures modularity, flexibility, and maintainability.

System Overview

The diagram outlines the following key components of our system:

1. User Interface (UI):
○ The UI is both the starting point and the endpoint of the data flow.

Users interact with this interface to upload Excel files containing

16

workload data and conditions, and to initiate the calculations. The
minimalistic design of the prototype on the side promotes ease of
use and ensures that even non-technical users can navigate the
system efficiently.

2. Data Input Module:
○ This module receives the Excel files uploaded via the UI and

validates them to ensure they meet the required format. It acts as
the gatekeeper, ensuring only correctly formatted data is passed to
the next module. If any discrepancies are detected, they are flagged
by the Error-Checking and Validation Module, which is integrated
into this process.

3. Data Parsing and Filtering Module:
○ After validation, this module extracts relevant data from the Excel

sheets, filters out extraneous information, and structures the data in
a format suitable for further processing. It also applies specific rules
for handling special cases, ensuring that the data is both accurate
and ready for the dynamic algorithm. This module is essential for
streamlining and organizing the data before it moves to the
calculation stage.

4. Dynamic Algorithm Module:
○ The core of the system, this module applies the conditions and

weights defined in the external Excel sheet dynamically. It calculates
the workload based on the parsed data, adjusting automatically to
changes in the conditions sheet without requiring code modifications.
This flexibility allows for quick adaptation to new policies or changes
in faculty roles.

5. Calculation and Reporting Module:
○ This module finalizes the workload calculations and generates a

comprehensive report, which is then formatted for output. The report
includes annotated details that align with the university’s policies,
providing a clear and actionable overview for the associate deans.

6. Error-Checking and Validation Module:
○ This auxiliary module interacts with multiple stages to validate data

consistency and ensure accuracy throughout the pipeline. It monitors
for errors and discrepancies, providing feedback to users through
the UI when issues arise. This component is crucial for maintaining
the integrity of the system and preventing miscalculations.

17

Data Flow

The diagram demonstrates how each module is connected, showcasing the
linear flow of data:

● Data Entry and Processing: Users upload the necessary files through the
UI, which directs the data to the Data Input Module. If validated, the data is
passed through the Data Parsing and Filtering Module, where it is
condensed and organized.

● Algorithm Execution: The structured data moves to the Dynamic Algorithm
Module, where conditions and weights are applied dynamically. The
processed data then flows into the Calculation and Reporting Module for
final analysis and report generation.

● Output and Feedback: The UI displays the final report for download and
provides error messages or status updates throughout the process to keep
users informed.

By integrating these components into a cohesive system architecture, we
establish a robust framework that meets the application’s functional requirements
and addresses the identified challenges. The following conclusion summarizes
how this integrated approach effectively automates the faculty workload
calculations, providing a flexible and scalable solution for Northern Arizona
University.

Conclusion
In summary, the development of an automated faculty workload calculation
application for Northern Arizona University addresses the complex and
time-consuming task currently faced by associate deans. By leveraging an
intuitive, Excel-based system, we aim to enhance both the accuracy and
efficiency of workload assessments. This solution integrates dynamically
customizable algorithms that respond to Excel sheet updates, reducing the need
for code modifications and ensuring the application adapts to evolving policies
and data requirements. The technological challenges outlined, including
identifying crucial data points, parsing and condensing data, and creating a

18

customizable algorithm, are tackled with strategies that balance flexibility and
maintainability. By utilizing Excel as a familiar interface and adopting a modular
approach, we minimize user training and optimize adoption while ensuring data
integrity through error-checking mechanisms. Furthermore, the choice of a
simple, minimalist user interface ensures ease of use, allowing administrative
staff to seamlessly interact with the application. This comprehensive approach,
combined with a focus on user-friendliness and adaptability, ensures that the
application will effectively support associate deans in their workload management
duties. It will also provide a scalable and maintainable solution that aligns with
Northern Arizona University’s needs, ultimately enabling more accurate and
efficient workload planning across all colleges.

19

	
	Table of Contents
	Introduction
	Technological Challenges
	We will need to:
	Determine what data points are crucial for calculations:
	Determine the best method for parsing and condensing the data:
	
	Create a highly customizable algorithm to ensure maintainability:
	Design a simple user interface to promote a seamless workflow:

	
	Technology Analysis
	Data Identification
	Data Filtration & Condensing
	Customizable Algorithm
	Simple Graphical User Interface

	Technology Integration
	System Overview
	Data Flow

	Conclusion
	In summary, the development of an automated faculty workload calculation application for Northern Arizona University addresses the complex and time-consuming task currently faced by associate deans. By leveraging an intuitive, Excel-based system, we aim to enhance both the accuracy and efficiency of workload assessments. This solution integrates dynamically customizable algorithms that respond to Excel sheet updates, reducing the need for code modifications and ensuring the application adapts to evolving policies and data requirements. The technological challenges outlined, including identifying crucial data points, parsing and condensing data, and creating a customizable algorithm, are tackled with strategies that balance flexibility and maintainability. By utilizing Excel as a familiar interface and adopting a modular approach, we minimize user training and optimize adoption while ensuring data integrity through error-checking mechanisms. Furthermore, the choice of a simple, minimalist user interface ensures

